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Motivation		

Decomposition &	Reduced	Order	Modeling	of	Complex	Multiscale	Problems	

[K] [W/m3]

Large	scale	simulations	O(106)- O(108)	CPU	hours	/	run
Complex	physics	:	Flow,	turbulence,	combustion,	heat	transfer,	etc



The	Autoencoder
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Structure:	encoder	(compression)	+	decoder	(decompression)
– Encoder𝚽 𝐱; 𝛉𝚽
– Decoder	𝚿 . ;	𝛉𝚿
– POD:𝚽→	𝐔) · ,	𝚿→	𝐔 ·
– Trained	as	one	single	network,	𝛉𝚽 and	𝛉𝚿 are	optimized	jointly
– Automatically	separated	into	encoder	and	decoder	by	cutting	at	the	“bottleneck”

“Applied Deep Learning”
https://towardsdatascience.com/

𝚽 𝚿

x̃ =  (·, ✓ ) � �(x, ✓�)
x



Embedding	(in	the	right	coordinates)



Part	1

Operator-theoretic	Learning	&	Decomposition



Koopman operator	and	linear	embedding



Connections	of	Koopman to	other	operators
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Liouville operator

Liouville PDE

Generator

hh,Pt⇢i = hKth, ⇢i

⇢(·, t) = Pt � ⇢Perron-Frobenius operator

Duality

Liouville generates	Koopman

Perron-Frobenius is	adjoint of	Koopman



Spectral	expansion	of	Koopman operators



Koopman operators	&	“Deep”	Learning

Several	works	since	2018



Extracting a Koopman-invariant subspace

Arbabi &	Mezic 2019

Goal:	Extracting	the	Koopman operator	defined	on

Observation	functionals

We	are	also	interested	in	retrieving	the	state	x



Enforcing	structure	for	Learning	:	“Physics	information”



Enforcing structure for Learning : Tractable optimization



“Data-free”, “Physics-informed”

Trajectory data, ”Unknown physics”



Enforcing	structure
for	Learning	:	
“DMD	ResNet”



Enforcing	structure	for	Learning	:	Stability



x

f(x)

Naïve	“Autoencoders”



x

f(x)

Pan. S. & Duraisamy, K., Physics-Informed 
Probabilistic Learning of Linear Embeddings of 
Non-linear Dynamics With Guaranteed Stability, 
SIAM J. of Applied Dynamical Systems, 2020.

Putting	it	all	together	(deterministic	form)



Bayesian	Neural	Networks	&	
Variational Inference



Variational Inference



Verification	on	Model	dynamical	systems
Duffing	oscillator:	Eigenfunctions (with	uncertainty)

Prediction	and	sensitivity	to	data

100	data	points.																				1000	data	points																		10000	data	points



Flow	over	cylinder:
Prediction	with	
uncertainties

•Gaussian white noise added 



Flow	over	cylinder:
Prediction	with	
uncertainties

Velocity	magnitude	
(mean)

Velocity	magnitude	
(standard	deviation)

Physics-Informed	Probabilistic	Learning	of	Linear	
Embeddings of	Non-linear	Dynamics	With	Guaranteed	
Stability,	Pan,	S.,	and	Duraisamy,	K.,	SIADS,	2020



Proposed framework

Steps:

I
a-priori cross validation to

choose an appropriate

hyperparameter

I
mode-by-mode error analysis

I
choose a trade-o↵ between

reconstruction error and

linear evolving error

I
sparse reconstruction of

system with multi-task

learning
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Multi-task	learning	framework	to	extract	sparse	
Koopman-invariant	subspaces

Sparsity-promoting algorithms for the discovery of 
informative Koopman invariant subspaces, Pan, S., N. A-M 
and Duraisamy, K., arXiv:2002.10637



Turbulent: 3D ship-airwake with impulse side-wind

I
transient behavior is

accurately reconstructed

I
stable modes are successfully

extracted from strongly

nonlinear transient data

I
left mode: due to side edge

of superstructure. right

mode: due to funnel
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Turbulent	Ship	Airwake

Sparsity-promoting algorithms for the discovery of 
informative Koopman invariant subspaces, Pan, S., N. A-M 
and Duraisamy, K., arXiv:2002.10637
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Summary

Many	opportunities	to	enforce	structure	in	
Autoencodersè flexible	and	powerful	tools



Part 2

Learning	Reduced	Order	Models	of	
Parametric	Spatio-temporal	dynamics



• B.	Kramer,	K.	E.	Willcox,	AIAA	Journal	,2019

• M.	Guo,	J.	S.	Hesthaven,	CMAME,	2018.

• A.	Mohan,	D.	Daniel,	M.	Chertkov,	D.	Livescu,	arXiv,	2019

• S.	Lee,	D.	You,	arXiv,	2019.	

• Q.	Wang,	J.	S.	Hesthaven,	D.	Ray,	JCP,	2019.	

Non-intrusive	data-driven	ROMs

qn+1
l = f(qn+1

l ,qn
l , ....q

n�l
l , B(un+1), µ)

Some	recent	works:



Basic	Component:	Convolutional	Layer

29

• Convolutional	layers	preserve	complex	
spatio-temporal	“information”

• Convolutional	operation	on	a	local	window	w
– 𝑥 ∗ 𝑤 ./ = ∑ ∑ 𝑥.23,/25𝑤3,526

576
28
378

• Ideal	for	“localized”	feature	identification
• Rotation	and	translation	invariant,	if	

properly	constructed

http://cs231n.github.io/convolutional-networks/

: 
“Applied Deep Learning”
https://towardsdatascience.com/



Temporal	Convolutional
• Performs	dilated	1D	convolutional	operation	in	temporal/sequential	direction

– 𝑥 ∗9 𝑤 . = ∑ 𝑥.293𝑤3:2;
37<

• Exponential	increase	in	reception	field	è an	increasingly	popular	alternative	to	
RNN/LSTM

Input	sequence

Conv-1:	d=1
reception	field:	2

Conv-2:	d=2
reception	field:	4

Conv-3:	d=4
reception	field:	8

Output/Conv-4:	d=8
reception	field:	16

Example:	k	=	2,	d	=	2i

Source	of	image:	github.com/philipperemy/keras-tcn



Training	Multi-level	convolutional	AE	networks



Example	CAE	architecture
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Prediction	using	Multilevel	AE	networks	



Example	TCAE	architecture



Prediction	using	Multilevel	AE	networks	



Time	stepping
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Example TCN architecture

*:  Convolution direction

0 1 0 1 0 1 0

1 0 0 1 0 0 1

Input
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convolution

Dense
𝐪>.A;
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convolution
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dilated 1D
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steps

𝑛> channels
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Input
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dilated 1D

convolution

1D convolution
𝐪>.A;

Non-strided
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𝑛> input 
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*
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*:  Convolution direction

Example TCN architecture
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Component
CAE	reconstruction CAE	+	TCN

(final	step)Training Testing

Pressure 0.04% 0.1% 0.12%

Density 0.01% 0.04% 0.14%

Velocity 0.04% 0.08% 0.13%

Numerical	Tests:	Discontinuous	compressible	flow
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Discontinuous	compressible	flow	:	Impact	of	data
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Numerical	Tests	:	3D	Ship	Airwake

– Incompressible	Navier-Stokes
– 576k	DOF,	400	time	snapshots
– Global	parameter:	sliding	angle	𝛼
– Training:	𝛼 =	5°	:5°	:20°
– Prediction:	𝛼 =	12.5

𝛼 =	5° 𝛼 =	20°
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Numerical	Test:	3D	Ship	Airwake

Component
CAE	reconstruction

MLP	+	TCAE	+	CAE
Training Testing

U 0.12% 0.30% 0.51%

V 0.09% 0.38% 0.89%

W 0.08% 0.29% 0.62%

Relative	absolute	error

Truth

Prediction

Prediction	vs	
Truth

Latent	variable

Manuscript	“Multi-level	Convolutional	Autoencoder	Networks	for	
Parametric	Prediction	of	Spatio-temporal	Dynamics,”	Submitted	CMAME



• Fully	Data-driven	framework

• Multi-level	neural	network	architecture
• Convolutions	in	space	&	time

• Non-linear	manifolds
• Fast	training,	faster	prediction

• Up	to	6	orders	of	reduction	in	DoF
• Total	training	time:	3.6	hours	on	one	NVIDIA	Tesla	P100	GPU	for	3D	ship	air	wake
• Prediction	time:		Seconds	for	a	new	parameter	or	hundreds	of	future	steps

Caveats
• Require	large	amounts	of	data

• No	indicator	for	choice	of	latent	dimensions	è use	singular	values	to	find	an	
upper	bound
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Manuscript	“Multi-level	Convolutional	Autoencoder	Networks	for	Parametric	Prediction	of	Spatio-temporal	Dynamics”	
to	be	submitted	to	ArXiv in	a	week

Summary
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𝛼 =	5°

Numerical	Tests


